Queues are a linear data structure that store data in a “first in, first out” (FIFO) order. Unlike arrays, you cannot access elements by index and instead can only pull the next oldest element. This m
# lets think of another scenareo where we want to model a line at a store
# or a queue at the airport
# for this comes the queue data structure
# lets think of another scenareo where we want to model a line at a store
# or a queue at the airport
# for this comes the queue data structure
# like the stack we can add and remove data
# this is more like a line of people in a queue
# for this we could enqueue and item on to the data structure
# and we can dequeue an item from the queue
# This data structure works as a FIFO or (first in first out) data structure
# think of how you could utilise a linked list to create a queue
"""
A queue is a data structure whose primary purpose is to store and
return elements in First In First Out order.
1. Implement the Queue class using an array as the underlying storage structure.
Make sure the Queue tests pass.
2. Re-implement the Queue class, this time using the linked list implementation
as the underlying storage structure.
Make sure the Queue tests pass.
3. What is the difference between using an array vs. a linked list when
implementing a Queue?
Stretch: What if you could only use instances of your Stack class to implement the Queue?
What would that look like? How many Stacks would you need? Try it!
"""
# Implement a Queue using an array for the underlying storage
# class QueueA:
# def __init__(self):
# self.storage = []
# def __len__(self):
# return len(self.storage)
# def enqueue(self, value):
# self.storage.append(value)
# def dequeue(self):
# if len(self.storage) == 0:
# return None
# return self.storage.pop(0)
class QueueA:
def __init__(self):
self.storage = []
def __len__(self):
return len(self.storage)
def enqueue(self, value):
self.storage.append(value)
def dequeue(self):
if len(self.storage) == 0:
return None
return self.storage.pop(0)
from linked_list import LinkedList
# Queue implementation using a Linked List for the underlying storage
class QueueL:
def __init__(self):
self.storage = LinkedList()
self.size = 0
def __len__(self):
return self.size
def enqueue(self, item):
self.storage.add_to_tail(item)
self.size += 1
def dequeue(self):
if self.size == 0:
return None
self.size -= 1
return self.storage.remove_head()
class QueueLL(LinkedList):
def __init__(self):
super().__init__()
self.size = 0
def enqueue(self, item):
self.add_to_tail(item)
self.size += 1
def dequeue(self):
if self.size == 0:
return None
self.size -= 1
return self.remove_head()
# FIFO: first in first out
# create the abstract data type
class Queue:
def __init__(self):
# initialize it to a one dimensional array or linked list
self.queue = []
"""
Stack methods (enqueue, dequeue, peek, is_empty, size_queue)
"""
# function to check if the queue is empty O(1)
def is_empty(self):
return self.queue == []
# function to add data to the queue O(1)
def enqueue(self, data):
self.queue.append(data)
# function to remove and return the first item inserted to the queue O(N)
def dequeue(self):
# first check to make sure its not an empty queue
if self.size_queue()!= 0:
# get the first item in the queue
data = self.queue[0]
# remove it
del self.queue[0]
# return the item
return data
else:
return -1
# function to return the first item in the queue without removing it
# O(1)
def peek(self):
return self.queue[0]
# function get the size of the queue O(1)
def size_queue(self):
return len(self.queue)
"""
Using the methods
"""
queue = Queue()
queue.enqueue(1)
queue.enqueue(2)
queue.enqueue(3)
print(f'Size: {queue.size_queue()}')
print(f'Dequeue: {queue.dequeue()}')
print(f'Size: {queue.size_queue()}')
print(f'Peeked item: {queue.peek()}')
print(f'Size: {queue.size_queue()}')
"""Make a Queue class using a list!
Hint: You can use any Python list method
you'd like! Try to write each one in as
few lines as possible.
Make sure you pass the test cases too!"""
class Queue:
def __init__(self, head=None):
self.storage = [head]
def enqueue(self, new_element):
if(self.storage):
self.storage.append(new_element)
else:
self.storage = [new_element]
return new_element
def peek(self):
if(self.storage):
return self.storage[0]
else:
return None
def dequeue(self):
if(self.storage):
return self.storage.pop(0)
else:
return None
# Setup
q = Queue(1)
q.enqueue(2)
q.enqueue(3)
# Test peek
# Should be 1
print q.peek()
# Test dequeue
# Should be 1
print q.dequeue()
# Test enqueue
q.enqueue(4)
# Should be 2
print q.dequeue()
# Should be 3
print q.dequeue()
# Should be 4
print q.dequeue()
q.enqueue(5)
# Should be 5
print q.peek()
"""Make a Queue class using a list!
Hint: You can use any Python list method
you'd like! Try to write each one in as
few lines as possible.
Make sure you pass the test cases too!"""
class Queue:
def __init__(self, head=None):
self.storage = [head]
def enqueue(self, new_element):
if(self.storage):
self.storage.append(new_element)
else:
self.storage = [new_element]
return new_element
def peek(self):
if(self.storage):
return self.storage[0]
else:
return None
def dequeue(self):
if(self.storage):
return self.storage.pop(0)
else:
return None
# Setup
q = Queue(1)
q.enqueue(2)
q.enqueue(3)
# Test peek
# Should be 1
print q.peek()
# Test dequeue
# Should be 1
print q.dequeue()
# Test enqueue
q.enqueue(4)
# Should be 2
print q.dequeue()
# Should be 3
print q.dequeue()
# Should be 4
print q.dequeue()
q.enqueue(5)
# Should be 5
print q.peek()
"""
A deque is similar to all of the other sequential data structures but
has some implementation details that are different from other sequences
like a list. This module highlights those differences and shows how
a deque can be used as a LIFO stack and a FIFO queue.
"""
from collections import deque
def main():
# A list is identical to a vector where a new array is created when
# there are too many elements in the old array, and the old array
# elements are moved over to the new array one-by-one. The time
# involved with growing its size increases linearly. A deque is
# identical to a doubly linked list whose nodes have a left pointer
# and a right pointer. In order to grow the linked list, a new node
# is created and added to the left, or the right, of the linked list.
# The time complexity involved with growing its size is constant.
# Check out the source code for a list and a deque here:
# https://github.com/python/cpython/blob/3.8/Objects/listobject.c
# https://github.com/python/cpython/blob/3.8/Modules/_collectionsmodule.c
dq = deque()
for i in range(1, 5):
# Similar to adding a new node to the right of the linked list
dq.append(i)
# Similar to adding a new node to the left of the linked list
dq.appendleft(i * 2)
# A deque can be iterated over to build any data structure
assert [el for el in dq] == [8, 6, 4, 2, 1, 2, 3, 4]
assert tuple(el for el in dq) == (8, 6, 4, 2, 1, 2, 3, 4)
assert {el for el in dq} == {8, 6, 4, 2, 1, 3}
# A deque can be used as a stack
# https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
assert dq.pop() == 4
assert dq.pop() == 3
# A deque can be used as a queue
# https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
assert dq.popleft() == 8
assert dq.popleft() == 6
if __name__ == "__main__":
main()
# -*- coding: utf-8 -*-
"""qandstack.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1Nr_QNCQNn2BqTil9swxDWfpsBcdumEbQ
# Queues and Stacks
## Queue
- think of a queue as a line of people queing up to be served
- FIFO (First In First Out)
## Stack
- think of a stack as a stack of recipts on a nail or pin
- LIFO (Last In First Out)
What data structure could be of use as an underlying data storage for a stack or queue?
"""
# lets write a simple stack
class Stack:
def __init__(self):
self.storage = []
def push(self, item):
"""
push the item on to the top of the stack
"""
self.storage.append(item)
def pop(self):
"""
pop the item from the top of the stack returning said item if there is anything on the stack.
otherwise return "The Stack is Empty"
"""
if len(self.storage) > 0:
return self.storage.pop()
return "The Stack is Empty"
def peek(self):
if len(self.storage) > 0:
return self.storage[-1]
return "The Stack is Empty"
s = Stack()
s.push(10)
s.push(20)
s.push(30)
l = []
l.append(s.pop())
l.append(s.pop())
l.append(s.pop())
print(l)
# lets write a simple queue
class Queue:
def __init__(self):
self.storage = []
def enqueue(self, item):
"""
enqueues the item in to the queue
"""
self.storage.append(item)
def dequeue(self):
"""
dequeue the item from the front of the queue returning said item if there is anything on the queue.
otherwise return "The Queue is Empty"
"""
if len(self.storage) > 0:
return self.storage.pop(0)
return "The Queue is Empty"
q = Queue()
q.enqueue(10)
q.enqueue(20)
q.enqueue(30)
l2 = []
l2.append(q.dequeue())
l2.append(q.dequeue())
l2.append(q.dequeue())
print(l2)
# lets write a more performant queue
"""
F R
[10]-> [20]-> None
"""
class LLNode:
def __init__(self, data):
self.data = data
self.next = None
def __repr__(self):
return f"[{self.data}]"
class LLQueue:
def __init__(self):
self.front = None
self.rear = None
def enqueue(self, item):
new_node = LLNode(item)
if self.rear is None:
self.front = new_node
self.rear = new_node
else:
self.rear.next = new_node
self.rear = new_node
def dequeue(self):
old_front = "The Queue is Empty"
if self.front is not None:
old_front = self.front
self.front = old_front.next
if self.front is None:
self.rear = None
return old_front
q = LLQueue()
q.enqueue(10)
q.enqueue(20)
q.enqueue(30)
l2 = []
l2.append(q.dequeue())
l2.append(q.dequeue())
l2.append(q.dequeue())
l2.append(q.dequeue())
print(l2)
"""# Break
# CODE 8119
"""
# lets write a more performant stack
class LLNode:
def __init__(self, data):
self.data = data
self.next = None
def __repr__(self):
return f"[{self.data}]"
class LLStack:
def __init__(self):
self.top = None
def push(self, data):
new_node = LLNode(data)
new_node.next = self.top
self.top = new_node
def pop(self):
if self.top is not None:
poped_node = self.top
self.top = poped_node.next
return poped_node
else:
return "The Stack is Empty"
"""# Demos"""
"""
You've encountered a situation where you want to easily be able to pull the
largest integer from a stack.
You already have a `Stack` class that you've implemented using a dynamic array.
Use this `Stack` class to implement a new class `MaxStack` with a method
`get_max()` that returns the largest element in the stack. `get_max()` should
not remove the item.
*Note: Your stacks will contain only integers. You should be able to get a
runtime of O(1) for push(), pop(), and get_max().*
"""
class Stack:
def __init__(self):
"""Initialize an empty stack"""
self.items = []
def push(self, item):
"""Push a new item onto the stack"""
self.items.append(item)
def pop(self):
"""Remove and return the last item"""
# If the stack is empty, return None
# (it would also be reasonable to throw an exception)
if not self.items:
return None
return self.items.pop()
def peek(self):
"""Return the last item without removing it"""
if not self.items:
return None
return self.items[-1]
class MaxStack:
def __init__(self):
# Your code here
self.stack = Stack()
self.maxes_stack = Stack()
def push(self, item):
"""Add a new item onto the top of our stack."""
# Your code here
self.stack.push(item)
if self.maxes_stack.peek() is None or item >= self.maxes_stack.peek():
self.maxes_stack.push(item)
def pop(self):
"""Remove and return the top item from our stack."""
# Your code here
item = self.stack.pop()
if item == self.maxes_stack.peek():
self.maxes_stack.pop()
return item
def get_max(self):
"""The last item in maxes_stack is the max item in our stack."""
# Your code here
return self.maxes_stack.peek()
ms = MaxStack()
ms.push(20)
ms.push(30)
ms.push(9)
ms.push(102)
ms.push(33)
ms.push(1)
ms.pop()
ms.pop()
ms.pop()
print(ms.get_max())
"""# Optionals"""
"""
Your goal is to define a `Queue` class that uses two stacks. Your `Queue` class
should have an `enqueue()` method and a `dequeue()` method that ensures a
"first in first out" (FIFO) order.
As you write your methods, you should optimize for time on the `enqueue()` and
`dequeue()` method calls.
The Stack class that you will use has been provided to you.
"""
class Song:
def __init__(self, name, link):
self.name = name
self.link = link
def __repr__(self):
return f"{self.name}: {self.link}"
s1 = Song("Bob The Builder", "http://www.gogle.co.uk/")
s2 = Song("Eclipse - Pink Floyd 1", "http://www.yashoo.com")
s3 = Song("Bob The Builder 2", "http://www.gogle.co.uk/")
s4 = Song("Eclipse - Pink Floyd 2", "http://www.yashoo.com")
s5 = Song("Bob The Builder 3", "http://www.gogle.co.uk/")
s6 = Song("Eclipse - Pink Floyd 3", "http://www.yashoo.com")
s7 = Song("Bob The Builder", "http://www.gogle.co.uk/")
s8 = Song("Eclipse - Pink Floyd Uncut", "http://www.yashoo.com")
class Stack:
def __init__(self):
self.data = []
def push(self, item):
self.data.append(item)
def pop(self):
if len(self.data) > 0:
return self.data.pop()
return "The stack is empty"
class QueueTwoStacks:
def __init__(self):
# Your code here
self.in_stack = Stack()
self.out_stack = Stack()
def enqueue(self, item):
# Your code here
self.in_stack.push(item)
def dequeue(self):
# Your code here
if len(self.out_stack.data) == 0:
while len(self.in_stack.data) > 0:
stack_item = self.in_stack.pop()
self.out_stack.push(stack_item)
if len(self.out_stack.data) == 0:
return "can not dequeue from an empty queue"
return self.out_stack.pop()
# q = QueueTwoStacks()
# q.enqueue(20)
# q.enqueue(220)
# q.enqueue(201)
# q.enqueue(120)
# q.enqueue(230)
# q.enqueue(320)
# q.enqueue(3)
# l3 = []
# l3.append(q.dequeue())
# l3.append(q.dequeue())
# l3.append(q.dequeue())
# l3.append(q.dequeue())
# l3.append(q.dequeue())
# l3.append(q.dequeue())
# l3.append(q.dequeue())
q = QueueTwoStacks()
q.enqueue(s1)
q.enqueue(s2)
q.enqueue(s3)
q.enqueue(s4)
q.enqueue(s5)
q.enqueue(s6)
q.enqueue(s7)
l3 = []
l3.append(q.dequeue())
l3.append(q.dequeue())
l3.append(q.dequeue())
l3.append(q.dequeue())
l3.append(q.dequeue())
l3.append(q.dequeue())
l3.append(q.dequeue())
print(l3)
class Queue:
def __init__(self):
"""
Initializing Queue.
"""
self.queue = []
def isEmpty(self) -> bool:
return True if len(self.queue) == 0 else False
def front(self) -> int:
return self.queue[-1]
def rear(self) -> int:
return self.queue[0]
def enqueue(self, x: int) -> None:
self.x = x
self.queue.insert(0, x)
def dequeue(self) -> None:
self.queue.pop()from collections import deque
class Queue:
def __init__(self):
"""
Initializing Queue.
"""
self.queue = deque()
def isEmpty(self) -> bool:
return True if len(self.queue) == 0 else False
def front(self) -> int:
return self.queue[-1]
def rear(self) -> int:
return self.queue[0]
def enqueue(self, x: int) -> None:
self.x = x
self.queue.append(x)
def dequeue(self) -> None:
self.queue.popleft()