datastructures-in-python
  • Home
  • Downloads & Misc-Assets
  • README
  • Navigation
  • Curriculum
    • Outline
      • General Content
      • Python-Data-Structures-Unit
    • wk17
      • Outline-w17
      • homework
      • D1-Module 01 - Python I
        • Configuring Ubuntu for Python Web Development
        • Install Python
      • D2- Module 02 - Python II
      • D3- Module 03 - Python III
      • D4-Module 04 - Python IV
    • wk18
      • Outline-W-18
      • D1- Module 01 - Number Bases and Character Encoding
      • D2- Module 02 - Hash Tables I
        • Hash Table / Hash Map In Python:
        • Hash Table Use Cases
        • Practice
      • D3-Module 03 - Hash Tables II
      • D4- Module 04 - Searching and Recursion
    • wk19
      • Outline-W-19
      • D1- Module 01 - Linked Lists
        • Homework
          • Helpful Resource
      • D2- Module 02 - Queues and Stacks
      • D3- Module 03 - Binary Search Trees
        • BST Definition:
      • D4- Module 04 - Tree Traversal
        • Tree Traversals (Inorder, Preorder and Postorder)
    • wk20
      • Outline-W-20
      • D1-Graphs I
      • D2-Graphs 2
      • DFS
      • D4
  • Utilities
    • Utilites
      • Python Libraries
      • YouTube
      • Code Lab Notebook Embeds From Lecture
    • Code lab Notebooks
    • Repl.IT
      • Trinket
  • Abstract Data Structures
    • Algorithms
      • Algo-Resources
        • List-Of-Solutions-To-Common-Interview-Questions
      • Dijkstra's algorithm
      • Calculate a Factorial With Python - Iterative and Recursive
      • DFS
      • BFS
        • BFS Examples
      • Palendrome
    • Data Structures Overview
      • General Data Structures Notes
        • DS-Explained-Simple
      • Untitled
      • Algorithms
      • Dictionary
    • Abstract Data Structures:
      • Array
        • Extra-Array
        • Array Practice
      • Binary Search
      • Binary Tree
        • Binary Tree Explained
        • Find the maximum path sum between two leaves of a binary tree
      • Binary Search Tree
        • BST Explained
        • BST Insert
        • BST-Largest-Sub-Tree
      • Exotic
        • Tire
        • Dynamic Programming
      • Graphs
        • Overflow Practice Problems
        • Graphs Explained
        • Earliest Ancestor
        • _Mini Graph-Projects
          • # Social Graph
          • number of 1 islands
          • Searching and Generating Graphs
        • Graph FAQ
          • Graph DFS
        • Connected Components
        • Randomness
        • Graph BFS
        • Topological Sort
      • Hash Table
        • Hashmap or Hash tables
        • Hash Table and HashMap in Python
      • Heap
        • Heap Examples
      • String
      • Map
        • Examples
      • Queue
        • Queue Continued...
        • Queue Sandbox
        • Dequeue
      • Tree
        • In Order Traversal
        • Tree Equal ?
        • Ternary-search-trees
        • Red_Black Tree
        • Tree Mirror:
        • Tree Traversal
      • Recursion
        • Recursion Explained
          • Recursion Examples
      • Linked List
        • Linked List Background
        • Double Linked List
        • List Example
        • Examples (LL) continued
        • List Operations
      • Set
        • Set
        • Set Intersection Union
        • Disjoint Set
      • Sorting
        • In JavaScript
        • Merge Sort
        • Iterative Sorting
        • Recursive Sorting
        • Graph Topological Sort
        • SelectionSort
        • Quick Sort
        • Merge Sort
        • Insertion Sort
      • Stack
        • Stack Continued
        • Stack Part 3
      • Searching
        • Binary Search
        • Searching & Sorting Computational Complexity (JS)
  • practice
    • GCA Sprint Prep:
      • Practice Problems
      • Code Signal CGA Sprint Resources
      • CGA-Sprint Prep
    • Supplemental Practice:
      • Practice
      • JavaScript Algorithms
      • Industry Standard Algorithms
        • Interview Practice Resources
        • Write a Program to Find the Maximum Depth or Height of a Tree
      • Random Examples
      • Prompts
      • JS_BASICS
  • Resources
    • Python Cheat Sheet
      • Cheatsheet-v2
      • List Of Python Cheat Sheets
    • Youtube
    • PDF Downloads
    • Intro 2 Python
    • Dictionaries
      • Dictionaries Continued
    • Python VS JavaScript
    • Misc. Resources
    • Things To Internalize:
      • Functions
    • Intro To Python w Jupyter Notebooks
    • Calculating Big O
    • Useful Links
      • Awesome Python
      • My-Links
      • Beginners Guide To Python
  • Docs
    • Docs
      • Strings
        • Strings Continued
      • Touple
      • Values Expressions & Statments
      • Dictionaries, sets, files, and modules
        • Modules
      • Built-in Types
      • Built In Functions
        • Zip Function
      • Functions
      • Classes and objects
        • Inheritance
        • Classes
          • Python Objects & Classes
          • index
      • Dictionaries
      • Conditionals and loops
      • Lists
        • Reverse A List
        • Python Data Structures
        • More On Lists
        • Examples
          • More-Examples
        • List Compehensions
      • Basic Syntax
      • String-Methods
    • Queue & Stacks
  • quick-reference
    • My Medium Articles
    • Free Python Books
    • WHY Python?
    • Debugging
    • Python Snippets
    • Python3 Regex
    • Python Module Index:
      • Requests Module
    • Creating Python Modules
    • Useful Info
    • Python Glossary
    • Python Snippets
  • MISC
    • Built-in Methods & Functions
    • Data Structures Types
    • Math
    • Unsorted Examples
    • Outline
    • About Python
      • Python VS JavaScript
      • Python Modules & Python Packages
      • Misc
      • Python's Default Argument Values and Lists
      • SCRAP
  • Interview Prep
    • Interview Resources
      • By Example
        • Algo-Prep
      • Permutation
      • How to Write an Effective Resume of Python Developer
      • Interview Checklist
      • 150 Practice Problems & Solutions
  • Installations Setup & Env
    • python-setup
    • Installing Python Modules
    • Set Up Virtual Enviornment
  • Aux-Exploration
    • Related Studies
      • Self-Organizing Maps: Theory and Implementation in Python with NumPy
      • List Directory Contents
      • Employee Manager
      • OS Module
      • server-side-scripting
      • Web Scraping
      • Reading and Writing to text files in Python
      • General Data Structures
      • Touple
      • How to round Python values to whole numbers?
      • Python Array Module
      • Data Structures In JavaScript
      • Dunder Methods
      • Python GitHub API
      • JS-Event Loop
      • JavaScript Event Loop
      • Manipulating Files & Folders
  • experiments
    • Untitled
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. Docs

Docs

docs

PreviousBeginners Guide To PythonNextStrings

Last updated 3 years ago

Was this helpful?

h

The Python Tutorial

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple but effective approach to object-oriented programming. Python’s elegant syntax and dynamic typing, together with its interpreted nature, make it an ideal language for scripting and rapid application development in many areas on most platforms.

The Python interpreter is easily extended with new functions and data types implemented in C or C++ (or other languages callable from C). Python is also suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and features of the Python language and system. It helps to have a Python interpreter handy for hands-on experience, but all examples are self-contained, so the tutorial can be read off-line as well.

General Docs:

The Python interpreter and the extensive standard library are freely available in source or binary form for all major platforms from the Python Web site, , and may be freely distributed. The same site also contains distributions of and pointers to many free third party Python modules, programs and tools, and additional documentation.

For a description of standard objects and modules, see . gives a more formal definition of the language. To write extensions in C or C++, read and . There are also several books covering Python in depth.

This tutorial does not attempt to be comprehensive and cover every single feature, or even every commonly used feature. Instead, it introduces many of Python’s most noteworthy features, and will give you a good idea of the language’s flavor and style. After reading it, you will be able to read and write Python modules and programs, and you will be ready to learn more about the various Python library modules described in .

The is also worth going through.

https://www.python.org/
The Python Standard Library
The Python Language Reference
Extending and Embedding the Python Interpreter
Python/C API Reference Manual
The Python Standard Library
Glossary
1. Whetting Your Appetite
2. Using the Python Interpreter
2.1. Invoking the Interpreter
2.1.1. Argument Passing
2.1.2. Interactive Mode
2.2. The Interpreter and Its Environment
2.2.1. Source Code Encoding
3. An Informal Introduction to Python
3.1. Using Python as a Calculator
3.1.1. Numbers
3.1.2. Strings
3.1.3. Lists
3.2. First Steps Towards Programming
4. More Control Flow Tools
4.1. if Statements
4.2. for Statements
4.3. The range() Function
4.4. break and continue Statements, and else Clauses on Loops
4.5. pass Statements
4.6. Defining Functions
4.7. More on Defining Functions
4.7.1. Default Argument Values
4.7.2. Keyword Arguments
4.7.3. Special parameters
4.7.3.1. Positional-or-Keyword Arguments
4.7.3.2. Positional-Only Parameters
4.7.3.3. Keyword-Only Arguments
4.7.3.4. Function Examples
4.7.3.5. Recap
4.7.4. Arbitrary Argument Lists
4.7.5. Unpacking Argument Lists
4.7.6. Lambda Expressions
4.7.7. Documentation Strings
4.7.8. Function Annotations
4.8. Intermezzo: Coding Style
5. Data Structures
5.1. More on Lists
5.1.1. Using Lists as Stacks
5.1.2. Using Lists as Queues
5.1.3. List Comprehensions
5.1.4. Nested List Comprehensions
5.2. The del statement
5.3. Tuples and Sequences
5.4. Sets
5.5. Dictionaries
5.6. Looping Techniques
5.7. More on Conditions
5.8. Comparing Sequences and Other Types
6. Modules
6.1. More on Modules
6.1.1. Executing modules as scripts
6.1.2. The Module Search Path
6.1.3. “Compiled” Python files
6.2. Standard Modules
6.3. The dir() Function
6.4. Packages
6.4.1. Importing * From a Package
6.4.2. Intra-package References
6.4.3. Packages in Multiple Directories
7. Input and Output
7.1. Fancier Output Formatting
7.1.1. Formatted String Literals
7.1.2. The String format() Method
7.1.3. Manual String Formatting
7.1.4. Old string formatting
7.2. Reading and Writing Files
7.2.1. Methods of File Objects
7.2.2. Saving structured data with json
8. Errors and Exceptions
8.1. Syntax Errors
8.2. Exceptions
8.3. Handling Exceptions
8.4. Raising Exceptions
8.5. Exception Chaining
8.6. User-defined Exceptions
8.7. Defining Clean-up Actions
8.8. Predefined Clean-up Actions
9. Classes
9.1. A Word About Names and Objects
9.2. Python Scopes and Namespaces
9.2.1. Scopes and Namespaces Example
9.3. A First Look at Classes
9.3.1. Class Definition Syntax
9.3.2. Class Objects
9.3.3. Instance Objects
9.3.4. Method Objects
9.3.5. Class and Instance Variables
9.4. Random Remarks
9.5. Inheritance
9.5.1. Multiple Inheritance
9.6. Private Variables
9.7. Odds and Ends
9.8. Iterators
9.9. Generators
9.10. Generator Expressions
10. Brief Tour of the Standard Library
10.1. Operating System Interface
10.2. File Wildcards
10.3. Command Line Arguments
10.4. Error Output Redirection and Program Termination
10.5. String Pattern Matching
10.6. Mathematics
10.7. Internet Access
10.8. Dates and Times
10.9. Data Compression
10.10. Performance Measurement
10.11. Quality Control
10.12. Batteries Included
11. Brief Tour of the Standard Library — Part II
11.1. Output Formatting
11.2. Templating
11.3. Working with Binary Data Record Layouts
11.4. Multi-threading
11.5. Logging
11.6. Weak References
11.7. Tools for Working with Lists
11.8. Decimal Floating Point Arithmetic
12. Virtual Environments and Packages
12.1. Introduction
12.2. Creating Virtual Environments
12.3. Managing Packages with pip
13. What Now?
14. Interactive Input Editing and History Substitution
14.1. Tab Completion and History Editing
14.2. Alternatives to the Interactive Interpreter
15. Floating Point Arithmetic: Issues and Limitations
15.1. Representation Error
16. Appendix
16.1. Interactive Mode
16.1.1. Error Handling
16.1.2. Executable Python Scripts
16.1.3. The Interactive Startup File
16.1.4. The Customization Modules
https://codesandbox.io/s/ds-algo-forked-lfujh?from-embed
Basic Syntax
Functions
Built In Functions
3.10.2 Documentation
Logo